SPECIFICATION FOR APPROVAL

Customer:

Description: SuperFlo FAN

Customer P/N:

Delta Model NO.: AUB0812VH-SP00

Sample Rev: 05

Issue No:

Sample Issue Date: FEB.08.2006

Quantity:

1. SCOPE:

THIS SPECIFICATION DEFINES THE ELECTRICAL AND MECHANICAL CHARACTERISTICS OF THE DC BRUSHLESS AXIAL FLOW FAN. THE FAN MOTOR IS WITH TWO PHASES AND FOUR POLES.

2. CHARACTERS:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATED VOLTAGE</td>
<td>12 VDC</td>
</tr>
<tr>
<td>OPERATION VOLTAGE</td>
<td>10.8 – 13.2 VDC</td>
</tr>
<tr>
<td>INPUT CURRENT</td>
<td>0.19 (MAX. 0.41) A</td>
</tr>
<tr>
<td>INPUT POWER</td>
<td>2.28 (MAX. 4.92) W</td>
</tr>
<tr>
<td>SPEED</td>
<td>3600 R.P.M. (REF.)</td>
</tr>
<tr>
<td>MAX. AIR FLOW (AT ZERO STATIC PRESSURE)</td>
<td>1.190 (MIN. 1.100) M³/MIN.</td>
</tr>
<tr>
<td>MAX. AIR PRESSURE (AT ZERO AIRFLOW)</td>
<td>5.51 (MIN. 4.67) mmH₂O</td>
</tr>
<tr>
<td>ACOUSTICAL NOISE (AVG.)</td>
<td>39.0 (MAX. 43.0) dB-A</td>
</tr>
<tr>
<td>INSULATION TYPE</td>
<td>UL: CLASS A</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>INSULATION STRENGTH</th>
<th>10 MEG OHM MIN. AT 500 VDC (BETWEEN FRAME AND (+) TERMINAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIELECTRIC STRENGTH</td>
<td>5 mA MAX. AT 500 VAC 60 Hz ONE MINUTE, (BETWEEN FRAME AND (+) TERMINAL)</td>
</tr>
<tr>
<td>EXTERNAL COVER</td>
<td>OPEN TYPE</td>
</tr>
<tr>
<td>LIFE EXPECTANCE</td>
<td>50,000 HOURS CONTINUOUS OPERATION AT 40 °C WITH 15 ~ 65 %RH.</td>
</tr>
<tr>
<td>ROTATION</td>
<td>CLOCKWISE VIEW FROM NAME PLATE SIDE</td>
</tr>
<tr>
<td>OVER CURRENT SHUT DOWN</td>
<td>THE CURRENT WILL SHUT DOWN WHEN LOCKING ROTOR.</td>
</tr>
<tr>
<td>LEAD WIRE</td>
<td>UL 1061 -F- AWG #26</td>
</tr>
<tr>
<td></td>
<td>BLACK WIRE NEGATIVE(−)</td>
</tr>
<tr>
<td></td>
<td>YELLOW WIRE POSITIVE(+)</td>
</tr>
<tr>
<td></td>
<td>GREEN WIRE: TACHOMETER OUTPUT (F00)</td>
</tr>
<tr>
<td></td>
<td>BLUE WIRE: SPEED CONTROL (PWM)</td>
</tr>
</tbody>
</table>

NOTES:
1. ALL READINGS ARE MEASURED AFTER STABLY WARMING UP THROUGH 10 MINUTES.
2. THE VALUES WRITTEN IN PARENS, (), ARE LIMITED SPEC.
3. ACOUSTICAL NOISE MEASURING CONDITION:

NOISE IS MEASURED AT RATED VOLTAGE IN FREE AIR IN ANECHOIC CHAMBER WITH B & K SOUND LEVEL METER WITH MICROPHONE AT A DISTANCE OF ONE METER FROM THE FAN INTAKE.
3. MECHANICAL:

3-1. DIMENSIONS ------------------ SEE DIMENSIONS DRAWING

3-2. FRAME ----------------------- PLASTIC UL: 94V-0

3-3. IMPELLER --------------------- PLASTIC UL: 94V-0

3-4. BEARING SYSTEM --------------- Superflo BEARING

3-5. WEIGHT ------------------------ 99 GRAMS

4. ENVIRONMENTAL:

4-1. OPERATING TEMPERATURE ----------- -10 TO +60 DEGREE C

4-2. STORAGE TEMPERATURE ------------- -40 TO +70 DEGREE C

4-3. OPERATING HUMIDITY -------------- 5 TO 90 % RH

4-4. STORAGE HUMIDITY --------------- 5 TO 95 % RH

5. PROTECTION:

5-1. LOCKED ROTOR PROTECTION

IMPEDEANCE OF MOTOR WINDING PROTECTS MOTOR FROM FIRE IN 96 HOURS OF LOCKED ROTOR CONDITION AT THE RATED VOLTAGE.

5-2. POLARITY PROTECTION

BE CAPABLE OF WITHSTANDING IF REVERSE CONNECTION FOR POSITIVE AND NEGATIVE LEADS.

6. RE OZONE DEPLETING SUBSTANCES:

6-1. NO CONTAINING PBBs, PBBOs, CFCs, PBBEs, PBDPEs AND HCFCs.

7. PRODUCTION LOCATION

7-1. PRODUCTS WILL BE PRODUCED IN CHINA OR THAILAND OR TAIWAN.
8. BASIC RELIABILITY REQUIREMENT:

8–1. THERMAL CYCLING
LOW TEMPERATURE: -40°C
HIGH TEMPERATURE: +80°C
SOAK TIME: 30 MINUTES
TRANSITION TIME < 5 MINUTES
DUTY CYCLES: 5

8–2. HUMIDITY EXPOSURE
TEMPERATURE: +25°C ~ +65°C
HUMIDITY: 90–98% RH @ +65°C
FOR 4 HOURS/CYCLE
POWER: NON–OPERATING
TEST TIME: 168 HOURS

8–3. VIBRATION
TEMPERATURE: +25°C
ORIENTATION: X, Y, Z
POWER: NON–OPERATING
VIBRATION LEVEL: OVERALL gRMS=3.2

<table>
<thead>
<tr>
<th>FREQUENCY (Hz)</th>
<th>PSD (g^2/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.040</td>
</tr>
<tr>
<td>20</td>
<td>0.100</td>
</tr>
<tr>
<td>40</td>
<td>0.100</td>
</tr>
<tr>
<td>800</td>
<td>0.002</td>
</tr>
<tr>
<td>1000</td>
<td>0.002</td>
</tr>
</tbody>
</table>

TEST TIME: 2 HOURS ON EACH ORIENTATION

8–4. MECHANICAL SHOCK
TEMPERATURE: +20°C
ORIENTATION: X, Y, Z
POWER: NON–OPERATING
ACCELERATION: 20 G MIN.
PULSE: 11 ms HALF–SINE WAVE
NUMBER OF SHOCKS: 5 SHOCKS FOR EACH DIRECTION

8–5. LIFE
TEMPERATURE: MAX, OPERATING TEMPERATURE
POWER: OPERATING
DURATION: 1000 HOURS MIN.
9. P & Q CURVE:

* TEST CONDITION: INPUT VOLTAGE ------ OPERATION VOLTAGE
 TEMPERATURE ---- ROOM TEMPERATURE
 HUMIDITY ------ 65%RH
PART NO:
DELTA MODEL: AUB0812VH-SP00

10. DIMENSION DRAWING:

LABEL:

UNIT: mm (INCH)
11. FREQUENCY GENERATOR (FG) SIGNAL:
 1. OUTPUT CIRCUIT - OPEN COLLECTOR MODE:

 CAUTION: THE FG SIGNAL LEAD WIRE MUST BE KEPT AWAY FROM "+" LEAD WIRE & "-" LEAD WIRE.

 2. SPECIFICATION:
 \[V_{CE} \text{ (sat)} = 0.5V \text{ MAX.} \quad V_{FG} = 13.8VDC \text{ MAX.} \]
 \[I_c = 5mA \text{ MAX.} \quad R \geq \frac{V_{FG}}{I_c} \]

 3. FREQUENCY GENERATOR WAVEFORM:

 FAN RUNNING FOR 4 POLES

 \[T_1 = T_2 = T_3 = T_4 = 1/4TS \]

 \[N = \text{R.P.M} \]
 \[TS = 60/N(\text{SEC}) \]

 *VOLTAGE LEVEL AFTER BLADE LOCKED
 *4 POLES
12. PWM CONTROL SIGNAL:

<table>
<thead>
<tr>
<th>SIGNAL VOLTAGE RANGE: 0.8~20VDC</th>
<th>HIGH SIGNAL: 20 VDC MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW SIGNAL: 0.4 VDC MAX.</td>
<td>2.0 VDC MIN.</td>
</tr>
</tbody>
</table>

\[\text{DUTY CYCLE} = \frac{t}{T} \times 100(\%) \]

- The frequency for control signal of the fan shall be able to accept a 18~30 kHz.
- The preferred operating point for the fan is 25K Hz.
- At 100% duty cycle, the rotor will spin at maximum speed.
- At 0% duty cycle, the rotor will spin at minimum speed.
- With control signal lead disconnected, the fan will spin at maximum speed.
- At 25K Hz 0% duty cycle, the fan will be able to start from a dead stop.

13. SPEED VS PWM CONTROL SIGNAL: (AT RATED VOLTAGE & PWM FREQUENCY=25KHZ)

<table>
<thead>
<tr>
<th>DUTY CYCLE (%)</th>
<th>SPEED R.P.M. (REF.)</th>
<th>CURRENT (A) TYP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3600</td>
<td>0.19</td>
</tr>
<tr>
<td>0~20%</td>
<td>500~1000</td>
<td>0.02</td>
</tr>
</tbody>
</table>

14. PWM CONTROL LEAD WIRE INPUT IMPEDANCE:

14-1. The fan speed will default to maximum when the speed control input is left unconnected.
1. Delta will not guarantee the performance of the products if the application condition falls outside the parameters set forth in the specification.

2. A written request should be submitted to Delta prior to approval if deviation from this specification is required.

3. Please exercise caution when handling fans. Damage may be caused when pressure is applied to the impeller, if the fans are handled by the lead wires, or if the fans are hard-dropped to the production floor.

4. Except as pertains to some special designs, there is no guarantee that the products will be free from any such safety problems or failures as caused by the introduction of powder, droplets of water or encroachment of insect into the hub.

5. The above-mentioned conditions are representative of some unique examples and viewed as the first point of reference prior to all other information.

6. It is very important to establish the correct polarity before connecting the fan to the power source. Positive (+) and Negative (-). Damage may be caused to the fans if connection is with reverse polarity, as there is no foolproof method to protect against such error.

7. Delta fans are not suitable where any corrosive fluids are introduced to their environment.

8. Please ensure all fans are stored according to the storage temperature limits specified. Do not store fans in a high humidity environment. We highly recommend performance testing is conducted before shipping, if the fans have been stored over 6 months.

9. Not all fans are provided with the Lock Rotor Protection feature. If you impair the rotation of the impeller for the fans that do not have this function, the performance of those fans will lead to failure.

10. Please be cautious when mounting the fan. Incorrect mounting of fans may cause excess resonance, vibration and subsequent noise.

11. It is important to consider safety when testing the fans. A suitable fan guard should be fitted to the fan to guard against any potential for personal injury.

12. Except where specifically stated, all tests are carried out at relative (ambient) temperature and humidity conditions of 25°C, 65%. The test value is only for fan performance itself.

13. Be certain to connect an “over 4.7µF” capacitor to the fan externally when the application calls for using multiple fans in parallel, to avoid any unstable power.