SPECIFICATION FOR APPROVAL

Customer__
Description__
Part No. __REV. ________
Delta Model No. __PFR1212DHE-F00_______REV. ___00
Sample Issue No._______________________________________
Sample Issue Date_____NOV.04.2011_____________________

PLEASE SEND ONE COPY OF THIS SPECIFICATION BACK
AFTER YOU SIGNED APPROVAL FOR PRODUCTION PRE-
ARRANGEMENT.

APPROVED BY:__
DATE :___

DELTA ELECTRONICS, INC.
TAOYUAN PLANT
252, SHANG YING ROAD, KUEI SAN INDUSTRIAL ZONE TAOYUAN
SHIEN, TAIWAN, R.O.C.
TEL:886-(0)3-3591968
FAX:886-(0)3-3591991
SPECIFICATION FOR APPROVAL

Customer:

Description: DC FAN

Customer P/N:

Delta Model No.: PFR1212DHE-F00

Sample Rev: 00 Issue No:

Sample Issue Date:

Quantity:

1. SCOPE:

THIS SPECIFICATION DEFINES THE ELECTRICAL AND MECHANICAL CHARACTERISTICS OF THE DC BRUSHLESS AXIAL FLOW FAN. THE FAN MOTOR IS WITH SINGAL PHASE AND EIGHT POLES.

2. CHARACTERS:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATED VOLTAGE</td>
<td>12 VDC</td>
</tr>
<tr>
<td>OPERATION VOLTAGE</td>
<td>8.0 - 13.2 VDC</td>
</tr>
<tr>
<td>INPUT CURRENT</td>
<td>3.7 (MAX. 5.2) A</td>
</tr>
<tr>
<td>INPUT POWER</td>
<td>44.40 (MAX. 62.4) W</td>
</tr>
<tr>
<td>SPEED</td>
<td>7400 R.P.M. (REF.)</td>
</tr>
<tr>
<td>MAX. AIR FLOW (AT ZERO STATIC PRESSURE)</td>
<td>7.202 (MIN. 6.482) M³/MIN.</td>
</tr>
<tr>
<td></td>
<td>254.349(Min. 228.914) CFM</td>
</tr>
<tr>
<td>MAX. AIR PRESSURE (AT ZERO AIRFLOW)</td>
<td>36.513 (MIN. 29.575) mmH₂O</td>
</tr>
<tr>
<td></td>
<td>1.438(Min. 1.164) inchH₂O</td>
</tr>
<tr>
<td>ACOUSTICAL NOISE (AVG.)</td>
<td>68.5 (MAX. 72.5) dB-A</td>
</tr>
<tr>
<td>INSULATION TYPE</td>
<td>UL: CLASS A</td>
</tr>
</tbody>
</table>

(continued)
PART NO:

DELTA MODEL: PFR1212DHE-F00

<table>
<thead>
<tr>
<th>INSULATION STRENGTH</th>
<th>10 MEG OHM MIN. AT 500 VDC (BETWEEN FRAME AND (+) TERMINAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIELECTRIC STRENGTH</td>
<td>5 mA MAX. AT 500 VAC 60 Hz ONE MINUTE, (BETWEEN FRAME AND (+) TERMINAL)</td>
</tr>
<tr>
<td>EXTERNAL COVER</td>
<td>OPEN TYPE</td>
</tr>
<tr>
<td>LIFE EXPECTANCE</td>
<td>70,000 HOURS CONTINUOUS OPERATION AT 40 ºC WITH 15 ~ 65 %RH.</td>
</tr>
<tr>
<td>ROTATION</td>
<td>CLOCKWISE VIEW FROM NAME PLATE SIDE</td>
</tr>
<tr>
<td>OVER CURRENT PROTECTION</td>
<td>THE FAN WILL SHUT DOWN WHEN THE CURRENT IS ABNORMAL AND WILL RESTART AFTER 10 SECONDS</td>
</tr>
<tr>
<td>STARTING PROTECTION</td>
<td>START AT LOW SPEED, AFTER 10 SEC RUNNING AT FULL SPEED</td>
</tr>
<tr>
<td>LEAD WIRE</td>
<td>UL 1430 AWG #22 BLACK WIRE NEGATIVE(−) UL 1007 AWG #24 BLUE WIRE (F00) RED WIRE POSITIVE(+)</td>
</tr>
</tbody>
</table>

NOTES:

1. ALL READINGS ARE MEASURED AFTER STABLY WARMING UP THROUGH 10 MINUTES.
2. THE VALUES WRITTEN IN PARENS, (), ARE LIMITED SPEC.
3. ACOUSTICAL NOISE MEASURING CONDITION:

![DC Fan Diagram](attachment:image.png)

NOISE IS MEASURED AT RATED VOLTAGE IN FREE AIR IN AN ECHOIC CHAMBER WITH B & K SOUND LEVEL METER WITH MICROPHONE AT A DISTANCE OF ONE METER FROM THE FAN INTAKE.
3. MECHANICAL:

3–1. DIMENSIONS ----------------------- SEE DIMENSIONS DRAWING
3–2. FRAME --------------------------- PLASTIC UL: 94V–0
3–3. IMPELLER -------------------------- PLASTIC UL: 94V–0
3–4. BEARING SYSTEM ------------------ TWO BALL BEARINGS
3–5. WEIGHT ---------------------------- 410 GRAMS

4. ENVIRONMENTAL:

4–1. OPERATING TEMPERATURE ----------- –10 TO +70 DEGREE C
4–2. STORAGE TEMPERATURE ----------- –40 TO +75 DEGREE C
4–3. OPERATING HUMIDITY -------------- 5 TO 90 % RH
4–4. STORAGE HUMIDITY -------------- 5 TO 95 % RH

5. PROTECTION:

5–1. LOCKED ROTOR PROTECTION

IMPEDANCE OF MOTOR WINDING PROTECTS MOTOR FROM FIRE IN 96 HOURS OF LOCKED ROTOR CONDITION AT THE RATED VOLTAGE.

5–2. POLARITY PROTECTION

BE CAPABLE OF WITHSTANDING IF REVERSE CONNECTION FOR POSITIVE AND NEGATIVE LEADS.

6. RE OZONE DEPLETING SUBSTANCES:

6–1. NO CONTAINING PBBS, PBBOs, CFCs, PBBEs, PBDPEs AND HCFCs.

7. PRODUCTION LOCATION

7–1. PRODUCTS WILL BE PRODUCED IN CHINA OR THAILAND OR TAIWAN.
8. BASIC RELIABILITY REQUIREMENT:

8–1. THERMAL CYCLING
LOW TEMPERATURE: -40°C
HIGH TEMPERATURE: $+85^\circ$C
SOAK TIME: 30 MINUTES
TRANSITION TIME: < 5 MIN
NUMBER OF CYCLES: 10

8–2. HUMIDITY EXPOSURE
TEMPERATURE: 60°C
HUMIDITY: 90–95%
DURATION: 10 DAYS
THREE PCS ARE IN OPERATION (RATED VOLTAGE)

8–3. VIBRATION
ORIENTATION: X, Y, Z
POWER: NON–OPERATING
VIBRATION LEVEL: OVERALL $g_{RMS}=3.2$

<table>
<thead>
<tr>
<th>FREQUENCY (Hz)</th>
<th>PSD (g^2/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.040</td>
</tr>
<tr>
<td>20</td>
<td>0.100</td>
</tr>
<tr>
<td>40</td>
<td>0.100</td>
</tr>
<tr>
<td>800</td>
<td>0.002</td>
</tr>
<tr>
<td>1000</td>
<td>0.002</td>
</tr>
</tbody>
</table>

DURATION: 2 HOURS ON EACH ORIENTATION
SAMPLE CONDITION: NON–PACKING, NON–OPERATION

8–4. MECHANICAL SHOCK
PLUSE SHAPE: HALF–SINE
ORIENTATION: X, $-X$, Y, $-Y$, Z, $-Z$
DURATION: 6 ms
PEAK ACCELERATION: 100G
PULSE: 11 ms HALF–SINE WAVE
3 SHOCKS EACH ORIENTATION (TOTAL 18 SHOCKS)

8–5. LIFE
TEMPERATURE: MAX, OPERATING TEMPERATURE
POWER: OPERATING
DURATION: 1000 HOURS MIN.
9. P & Q CURVE:

* TEST CONDITION: INPUT VOLTAGE ---- OPERATION VOLTAGE
TEMPERATURE ---- ROOM TEMPERATURE
HUMIDITY -------- 65%RH
PART NO:

DELTA MODEL: PFR1212DHE-F00

10. DIMENSION DRAWING:

LABEL:

![Diagram of fan with dimensions and labels]

FRONT VIEW

NOTE: 1. LEAD WIRE UL1430 AWG#22
 RED WIRE POSITIVE (+)
 BLACK WIRE NEGATIVE (-)
 LEAD WIRE UL1007 AWG#24
 BLUE WIRE FREQUENCY (-F00)

2. THIS PRODUCT IS RoHS COMPLIANT

page: 6 A00
11. **FREQUENCY GENERATOR (FG) SIGNAL:**

1. **OUTPUT CIRCUIT — OPEN COLLECTOR MODE:**

 ![Motor Driver Diagram]

 CAUTION:
 - The lead wire of FG signal can not touch
 - The lead wire of positive or negative.

2. **SPECIFICATION:**

 \[V_{ce} \text{ (sat)} = 0.5V \text{ MAX.} \quad V_{BE} = 13.2V \text{ MAX.} \]

 \[I_c = 5mA \text{ MAX.} \quad R \geq \frac{V_{BE}}{I_c} \]

3. **FREQUENCY GENERATOR WAVEFORM:**

 ![Voltage Waveform Diagram]

 FAN RUNNING FOR 8 POLES

 \[T_1 = T_2 = T_3 = T_4 = T_5 = T_6 = T_7 = T_8 = \frac{1}{8} \text{ TS} \]

 \[N = \text{R.P.M} \]

 \[T_S = 60/N \text{ (SEC)} \]

 \[* \text{VOLTAGE LEVEL AFTER BLADE LOCKED} \]

 \[* \text{8 POLES} \]
Application Notice

1. Delta will not guarantee the performance of the products if the application condition falls outside the parameters set forth in the specification.
2. A written request should be submitted to Delta prior to approval if deviation from this specification is required.
3. Please exercise caution when handling fans. Damage may be caused when pressure is applied to the impeller, if the fans are handled by the lead wires, or if the fan was hard-dropped to the production floor.
4. Except as pertains to some special designs, there is no guarantee that the products will be free from any such safety problems or failures as caused by the introduction of powder, droplets of water or encroachment of insect into the hub.
5. The above-mentioned conditions are representative of some unique examples and viewed as the first point of reference prior to all other information.
6. It is very important to establish the correct polarity before connecting the fan to the power source. Positive (+) and Negative (-). Damage may be caused to the fans if connection is with reverse polarity, if there is no foolproof method to protect against such error specifically mentioned in this spec.
7. Delta fans without special protection are not suitable where any corrosive fluids are introduced to their environment.
8. Please ensure all fans are stored according to the storage temperature limits specified. Do not store fans in a high humidity environment. We highly recommend performance testing is conducted before shipping, if the fans have been stored over 6 months.
9. Not all fans are provided with the Lock Rotor Protection feature. If you impair the rotation of the impeller for the fans that do not have this function, the performance of those fans will lead to failure.
10. Please be cautious when mounting the fan. Incorrect mounting of fans may cause excess resonance, vibration and subsequent noise.
11. It is important to consider safety when testing the fans. A suitable fan guard should be fitted to the fan to guard against any potential for personal injury.
12. Except where specifically stated, all tests are carried out at room (ambient) temperature and relative humidity conditions of 25°C, 65% RH. The test value is only for fan performance itself.
13. Be certain to connect an “4.7µF or greater” capacitor to the fan externally when the application calls for using multiple fans in parallel, to avoid any unstable power.